在我們的日常生活中,測(cè)量無(wú)處不在。從裁縫用皮尺量體裁衣,到建筑工人用卷尺丈量土地;從廚房里用勺子量取食材,到加油站用流量計(jì)為汽車加油,這些都屬于普通測(cè)量。我們用這些簡(jiǎn)單的工具和方法,滿足日常生活中的基本需求。然而,普通測(cè)量往往只要求得到一個(gè)大致的數(shù)值,比如用直尺測(cè)量一張紙的長(zhǎng)度,可能精確到毫米就足夠了;又或者用普通的體重秤測(cè)量體重,精確到千克就可以。
但隨著科學(xué)技術(shù)的不斷發(fā)展,我們對(duì)測(cè)量的精度要求越來(lái)越高。例如,在機(jī)械加工中,零件的制造精度可能需要達(dá)到微米甚至更高的級(jí)別,才能保證機(jī)器的正常運(yùn)行;在航天工程中,衛(wèi)星軌道的測(cè)量精度直接關(guān)系到任務(wù)的成敗。這就引出了一個(gè)重要的概念——精密測(cè)量。
與普通測(cè)量相比,精密測(cè)量對(duì)測(cè)量精度的要求要高得多。它不僅僅是通過(guò)增加測(cè)量次數(shù)或者改進(jìn)測(cè)量工具來(lái)提高精度,還涉及到對(duì)測(cè)量系統(tǒng)深入的研究和優(yōu)化。精密測(cè)量是人類對(duì)客觀世界進(jìn)行深入探索的必要手段,沒(méi)有精密測(cè)量就沒(méi)有現(xiàn)代科學(xué)與技術(shù)。
現(xiàn)代科學(xué)技術(shù)的發(fā)展離不開(kāi)精密測(cè)量。從微觀的粒子研究到宏觀的宇宙探索,精密測(cè)量始終是人類認(rèn)識(shí)世界和改造世界的關(guān)鍵工具??茖W(xué)研究也離不開(kāi)精密的測(cè)量?jī)x器和不斷發(fā)展的測(cè)量方案。
科學(xué)研究所用的各種測(cè)量?jī)x器
(圖片來(lái)源:AI生成)
實(shí)際上,目前絕大多數(shù)的諾貝爾物理學(xué)獎(jiǎng)的獲獎(jiǎng)成果都與精密測(cè)量的研究有關(guān),因此,基于精密測(cè)量的相關(guān)研究被認(rèn)為是離諾貝爾物理學(xué)獎(jiǎng)最近的領(lǐng)域。同時(shí),伴隨著精密測(cè)量精度的不斷提升,科學(xué)家們也在思考一個(gè)古老卻十分深刻的問(wèn)題,那就是——測(cè)量方案本身是否存在精度極限?
其實(shí),這個(gè)問(wèn)題并不容易直接回答。這是因?yàn)?,我們首先需要知道測(cè)量方案的精度極限到底是由哪些物理學(xué)的基本原理來(lái)決定的,只有這樣,我們才能知道如何不斷地提升測(cè)量精度,從而一步步地逼近精密測(cè)量的精度極限,甚至嘗試突破精度極限。
日常所見(jiàn)的測(cè)量?jī)x器,都存在一定的精度誤差
其實(shí),我們?nèi)粘I钪兴佑|到的各種精密測(cè)量?jī)x器,基本上都是屬于傳統(tǒng)的經(jīng)典測(cè)量方案。例如,在工程事件中用來(lái)測(cè)量長(zhǎng)度的標(biāo)準(zhǔn)毫米尺,測(cè)定微米量級(jí)厚度的螺旋測(cè)微尺,以及利用光的干涉條紋變化來(lái)實(shí)現(xiàn)納米量級(jí)測(cè)量的光學(xué)干涉儀等。
螺旋測(cè)微尺,又稱千分尺
(圖片來(lái)源:amazon)
然而,對(duì)于這些經(jīng)典的測(cè)量方案而言,其測(cè)量?jī)x器本身總是存在不可避免的技術(shù)缺陷,同時(shí),在實(shí)際使用中也會(huì)面臨設(shè)備老化等問(wèn)題。這就意味著,在對(duì)待測(cè)物理量進(jìn)行經(jīng)典測(cè)量的過(guò)程中,實(shí)際上總是會(huì)伴隨著各種測(cè)量誤差的出現(xiàn),而這種由于經(jīng)典測(cè)量誤差引起的噪聲也被稱為“散粒噪聲”。
受到“散粒噪聲”限制的經(jīng)典測(cè)量方案
(圖片來(lái)源:參考文獻(xiàn)1)
為了降低經(jīng)典測(cè)量過(guò)程中產(chǎn)生的“散粒噪聲”,從而不斷地提高經(jīng)典測(cè)量的精度,一句耳熟能詳?shù)脑捳Z(yǔ)就會(huì)浮現(xiàn)在各位小伙伴的腦海,那就是“多次測(cè)量取平均值”。
打個(gè)比方,如果用相鄰刻度線間隔為1mm的標(biāo)準(zhǔn)毫米尺,來(lái)直接測(cè)量一張A4紙張的真實(shí)厚度,這個(gè)測(cè)量結(jié)果大概率不準(zhǔn)。然而,如果我們將總計(jì)10000張同樣的A4紙張疊放在一起,再用標(biāo)準(zhǔn)毫米尺直接測(cè)量這一疊紙張的總厚度。這樣一來(lái),我們就可以用這疊紙的總厚度
除以紙張的總層數(shù)10000,從而可以直接計(jì)算得到單張A4紙張的實(shí)測(cè)厚度為
。
(圖片來(lái)源:AI生成)
實(shí)際上,這種進(jìn)行多次重復(fù)的測(cè)量方式符合數(shù)學(xué)上的統(tǒng)計(jì)分布規(guī)律,并且多次重復(fù)測(cè)量的結(jié)果誤差為單次測(cè)量誤差的。也就是說(shuō),當(dāng)我們對(duì)待測(cè)的物理量進(jìn)行
次的重復(fù)測(cè)量時(shí),理想情況下相應(yīng)的測(cè)量精度也會(huì)隨之提高
倍。
因此,這種不斷降低測(cè)量過(guò)程中的“散粒噪聲”而達(dá)到的精度極限,也被稱為經(jīng)典測(cè)量方案中的“標(biāo)準(zhǔn)量子極限”。也就是說(shuō),如果我們只采用經(jīng)典的測(cè)量方案來(lái)測(cè)量物理量,只能通過(guò)不斷地堆疊測(cè)量資源,從而逼近所謂的“標(biāo)準(zhǔn)量子極限”。
目前,經(jīng)典測(cè)量方案中最精確的測(cè)量?jī)x器當(dāng)屬于著名的激光干涉引力波天文臺(tái)(LIGO),它的測(cè)量精度達(dá)到驚人的米。然而,受到“標(biāo)準(zhǔn)量子極限”的理論限制,LIGO需要使用兩個(gè)長(zhǎng)達(dá)4千米的光學(xué)干涉腔以及高達(dá)750千瓦超強(qiáng)激光才能實(shí)現(xiàn)如此高的測(cè)量精度。
基于經(jīng)典光學(xué)干涉儀原理搭建的激光干涉引力波天文臺(tái)(LIGO)
(圖片來(lái)源:參考文獻(xiàn)2)
因此,科學(xué)家們希望采用全新的量子精度測(cè)量方案,來(lái)突破經(jīng)典測(cè)量方案中的“散粒噪聲”限制,從而在使用更少的測(cè)量資源的前提下,達(dá)到更高的測(cè)量精度。
想測(cè)得更準(zhǔn)?那就使用神奇的“量子糾纏性”
隨著對(duì)微觀量子世界不斷深入研究,科學(xué)家們又在思考一個(gè)全新的問(wèn)題,那就是如何利用有限的測(cè)量資源,來(lái)逼近更高的測(cè)量精度極限,從而對(duì)微弱的待測(cè)信號(hào)實(shí)現(xiàn)超高精度的測(cè)量。
為了回答這個(gè)全新的測(cè)量問(wèn)題,科學(xué)家們?cè)诳嗫嗨妓骱蠼K于尋找到了第三把“量子之尺”——量子糾纏性,讓更多的微觀粒子一起參與到量子精密測(cè)量中,并且共同發(fā)揮自身奇妙的量子魔力。正是利用了奇妙的“量子糾纏性”,科學(xué)家們才能突破傳統(tǒng)經(jīng)典測(cè)量中的“散粒噪聲”限制,并且對(duì)量子精密測(cè)量深處的奧秘一探究竟。
那么,到底什么才是“量子糾纏性”呢?其實(shí),它是存在于量子世界中微觀粒子之間的獨(dú)有特性,因此,在我們身處的宏觀經(jīng)典世界中難以覺(jué)察到它的存在。一般而言,當(dāng)幾個(gè)微觀粒子在彼此相互作用后,它們各自擁有的物理屬性(例如位置、動(dòng)量、自旋、偏振等)就不再相互獨(dú)立無(wú)關(guān),而是彼此關(guān)聯(lián)起來(lái)并且形成整體的性質(zhì)。那么,我們就稱這幾個(gè)微觀粒子彼此之間具有“量子糾纏性”。
處于量子糾纏態(tài)的一對(duì)微觀粒子的示意圖
(圖片來(lái)源:科技日?qǐng)?bào))
這么說(shuō)大家可能會(huì)覺(jué)得有點(diǎn)抽象,我們可以舉一個(gè)更加形象直觀的例子來(lái)解釋這種奇妙的“量子糾纏性”。
我們可以把量子世界中的每個(gè)微觀粒子看作一名學(xué)生,那么這群學(xué)生各自在家學(xué)習(xí)的時(shí)候總是會(huì)遇到一些問(wèn)題,例如,學(xué)習(xí)計(jì)劃不夠明確、容易開(kāi)小差等,從而很難達(dá)到較高的學(xué)習(xí)效率,這種各自分散的情況就類似于傳統(tǒng)的經(jīng)典測(cè)量方案。
然而,當(dāng)這群學(xué)生齊聚到課堂中,并且在老師的組織下,便會(huì)在彼此之間發(fā)生學(xué)習(xí)上的相互作用。這樣一來(lái),這群學(xué)生在學(xué)習(xí)上就不再各自為伍,而是作為一個(gè)班集體激發(fā)出更強(qiáng)的學(xué)習(xí)動(dòng)力,從而提高整體的學(xué)習(xí)效率。同樣的道理,量子世界中的每個(gè)微觀粒子就像班級(jí)內(nèi)的各個(gè)同學(xué)一樣,在彼此之間發(fā)揮獨(dú)特的相互作用,這就是我們前文所述的“量子糾纏性”的直觀理解。
(圖片來(lái)源:AI生成)
因此,我們不難發(fā)現(xiàn),“量子糾纏性”并不能直接用于描述單個(gè)微觀粒子的物理屬性,而是反映了各個(gè)微觀粒子在彼此相互作用后,所具有的集體化的量子效應(yīng)。正是利用這種神奇的“量子糾纏性”,科學(xué)家們才能突破前文提及的標(biāo)準(zhǔn)量子極限,從而實(shí)現(xiàn)更高精度的量子精密測(cè)量方案。
那量子精密測(cè)量存在精度極限嗎?
這時(shí)候,可能有好奇的小伙伴心里在想,既然傳統(tǒng)的經(jīng)典測(cè)量方案受限于測(cè)量過(guò)程中“散粒噪聲”的制約,而存在所謂的“量子標(biāo)準(zhǔn)極限”。那按照同樣的道理,量子精密測(cè)量方案是否也存在自身測(cè)量的精度極限呢?
實(shí)際上,這種利用微觀粒子間的“量子糾纏性”來(lái)放大原本微弱的待測(cè)信號(hào),從而達(dá)到更高測(cè)量精度的量子測(cè)量方案,仍然存在自身的測(cè)量精度極限。具體而言,對(duì)于處于量子糾纏態(tài)的個(gè)微觀粒子而言,其測(cè)量的誤差結(jié)果是單個(gè)微觀粒子情況下的
,并且相應(yīng)的測(cè)量精度也會(huì)提高
倍,從而突破原本測(cè)量精度僅為
倍的“標(biāo)準(zhǔn)量子極限”。
由于上述的這種重要的量子精密測(cè)量極限,最早是由物理學(xué)家海森堡發(fā)現(xiàn)并且提出的,因而也被稱為“海森堡極限”。
想必讀到這里,大家對(duì)“標(biāo)準(zhǔn)量子極限”和“海森堡極限”兩個(gè)計(jì)量學(xué)的概念開(kāi)始頭暈了,但是沒(méi)關(guān)系,我們只需要記住接下來(lái)的這句話即可——要想不斷地提高測(cè)量方案的測(cè)量精度,總是需要相應(yīng)地增加測(cè)量過(guò)程中所需的資源。
這個(gè)道理其實(shí)也很容易理解,畢竟“天下沒(méi)有免費(fèi)的午餐”。而為了定量地描述測(cè)量精度和消耗資源的數(shù)量關(guān)系,我們可以用數(shù)學(xué)表達(dá)式進(jìn)行表示。其中,
表示測(cè)量所需的資源(例如,經(jīng)典精密測(cè)量中所需的重復(fù)測(cè)量次數(shù),量子精密測(cè)量中所需的量子糾纏數(shù)目等),而
則用來(lái)衡量不同精密測(cè)量方案的精度極限。
“標(biāo)準(zhǔn)量子極限”與“海森堡極限”所滿足的精度極限系數(shù)關(guān)系
(圖片來(lái)源:作者繪制)
因此我們可以進(jìn)一步總結(jié)為,“標(biāo)準(zhǔn)量子極限”對(duì)應(yīng)的精度極限系數(shù),而“海森堡極限”對(duì)應(yīng)的精度極限系數(shù)
。這樣一來(lái),各位小伙伴們只需要記住精度極限系數(shù)
,就可以比較容易地區(qū)分“標(biāo)準(zhǔn)量子極限”和“海森堡極限”這兩個(gè)計(jì)量學(xué)的重要概念了。
綜上所述,利用有限的測(cè)量資源來(lái)實(shí)現(xiàn)更高的測(cè)量精度,一直是科學(xué)家們不懈的追求,同時(shí)也是精密測(cè)量科學(xué)發(fā)展的重要方向。因此,量子精密測(cè)量方案的出現(xiàn),為突破傳統(tǒng)的測(cè)量精度極限開(kāi)辟了一個(gè)全新的研究方向。
基于微觀粒子之間奇妙的“量子糾纏性”,科學(xué)家們正在利用這把“量子之尺”來(lái)一步步地逼近測(cè)量精度更高的“海森堡極限”。那么,“海森堡極限”又是如何制約量子精密測(cè)量方案的精度極限的?它和我們經(jīng)常聽(tīng)到的“測(cè)不準(zhǔn)原理”又有怎樣的聯(lián)系?科學(xué)家們是否已經(jīng)在實(shí)驗(yàn)上成功實(shí)現(xiàn)“海森堡極限”了呢?
請(qǐng)大家保持好奇心,讓我們?cè)谙乱黄恼轮幸黄鹛剿髁孔泳軠y(cè)量的“海森堡魔咒”吧。
參考文獻(xiàn)
[1] HildS. Abasicintroductiontoquantumnoiseandquantum-non-demolitiontechniques[M]//AdvancedInterferometersandtheSearchforGravitationalWaves: LecturesfromtheFirstVESFSchoolonAdvancedDetectorsforGravitationalWaves. Cham: SpringerInternationalPublishing,2014: 291-314.
[2] ZuoC,LiJ,SunJ,etal. Transportofintensityequation: atutorial[J]. OpticsandLasersinEngineering,2020,135: 106187.